首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   7篇
  国内免费   1篇
测绘学   2篇
大气科学   11篇
地球物理   44篇
地质学   58篇
海洋学   18篇
天文学   49篇
综合类   1篇
自然地理   7篇
  2024年   1篇
  2023年   3篇
  2022年   3篇
  2021年   1篇
  2020年   3篇
  2019年   4篇
  2018年   7篇
  2016年   9篇
  2015年   8篇
  2014年   7篇
  2013年   21篇
  2012年   4篇
  2011年   15篇
  2010年   8篇
  2009年   12篇
  2008年   17篇
  2007年   5篇
  2006年   7篇
  2005年   7篇
  2004年   4篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   8篇
  1998年   1篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   7篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1984年   1篇
  1976年   1篇
  1970年   1篇
排序方式: 共有190条查询结果,搜索用时 15 毫秒
131.
Abstract— In order to explore the thermal history of enstatite chondrites, we examined the cathodoluminescence (CL) and thermoluminescence (TL) properties of 15 EH chondrites and 21 EL chondrites, including all available petrographic types, both textural types 3–6 and mineralogical types α–δ. The CL properties of EL3α and EH3α chondrites are similar. Enstatite grains high in Mn and other transition metals display red CL, while enstatite with low concentrations of these elements show blue CL. A few enstatite grains with >5 wt% FeO display no CL. In contrast, the luminescent properties of the metamorphosed EH chondrites are very different from those of metamorphosed EL chondrites. While the enstatites in metamorphosed EH chondrites display predominantly blue CL, the enstatites in metamorphosed EL chondrites display a distinctive magenta CL with blue and red peaks of approximately equal intensity in their spectra. The TL sensitivities of the enstatite chondrites correlate with the intensity of the blue CL and, unlike other meteorite classes, are not simply related to metamorphism. The different luminescent properties of metamorphosed EH and EL chondrites cannot readily be attributed to compositional differences. But x-ray diffraction data suggests that the enstatite in EH5γ,δ chondrites is predominantly disordered orthopyroxene, while enstatite in EL6β chondrites is predominantly ordered orthopyroxene. The difference in thermal history of metamorphosed EL and EH chondrites is so marked that the use of single “petrographic” types is misleading, and separate textural and mineralogical types are preferable. Our data confirm earlier suggestions that metamorphosed EH chondrites underwent relatively rapid cooling, and the metamorphosed EL chondrites cooled more slowly and experienced prolonged heating in the orthopyroxene field.  相似文献   
132.
The Pertuis Charentais are shallow coastal embayments formed by the islands of Oleron and Re in the north-eastern Bay of Biscay. The low-lying coasts of the Pertuis Charentais are susceptible to extensive flooding caused by the storm surges generated in the North Atlantic. Numerical modelling of the 24 October 1999 surge event is performed in the present study in order to elucidate the impact of the wind-wave-tide-surge interactions on the surge propagation in the Pertuis Charentais. A 2D numerical model is constructed to simulate the wave and tide-surge propagation on a high-resolution finite-element grid by using the TELEMAC and TOMAWAC software. The effect of the wave-induced enhancement on the sea surface drag and on the bottom friction is evaluated by using the models of Janssen (1991) and Christoffersen and Jonsson (1985), respectively. The radiation stress is estimated by employing the approach of Longuet-Higgins and Stewart (1964). It is demonstrated that the peak surge in the night on 23–24 October has been amplified inside the Pertuis Charentais by about 20 cm due to the wind-wave interactions with the tide-surge currents. These interactions are strongest at the entrance to the Pertuis Charentais where the sea surface drag coefficient is significantly increased by the wind-wave coupling. The effect of the wave-tide-surge interactions is large enough to be included in the flood forecasting systems of this region.  相似文献   
133.
134.
Thanks to their past history on the main-sequence phase, supergiant massive stars develop a convective shell around the helium core. This intermediate convective zone (ICZ) plays an essential role in governing which g-modes are excited. Indeed, a strong radiative damping occurs in the high-density radiative core but the ICZ acts as a barrier preventing the propagation of some g-modes into the core. These g-modes can thus be excited in supergiant stars by the κ-mechanism in the superficial layers due to the opacity bump of iron, at  log  T = 5.2  . However, massive stars are submitted to various complex phenomena such as rotation, magnetic fields, semiconvection, mass loss, overshooting. Each of these phenomena exerts a significant effect on the evolution and some of them could prevent the onset of the convective zone. We develop a numerical method which allows us to select the reflected, thus the potentially excited, modes only. We study different cases in order to show that mass loss and overshooting, in a large enough amount, reduce the extent of the ICZ and are unfavourable to the excitation of g-modes.  相似文献   
135.
The Titan Saturn System Mission (TSSM) concept is composed of a TSSM orbiter provided by NASA that would carry two Titan in situ elements provided by ESA: the montgolfière and the probe/lake lander. One overarching goal of TSSM is to explore in situ the atmosphere and surface of Titan. The mission has been prioritized as the second Outer Planets Flagship Mission, the first one being the Europa Jupiter System Mission (EJSM). TSSM would launch around 2023–2025 arriving at Saturn 9 years later followed by a 4-year science mission in the Saturn system. Following delivery of the in situ elements to Titan, the TSSM orbiter would explore the Saturn system via a 2-year tour that includes Enceladus and Titan flybys before entering into a dedicated orbit around Titan. The Titan montgolfière aerial vehicle under consideration will circumnavigate Titan at a latitude of ~20° and at altitudes of ~10 km for a minimum of 6 months. The probe/lake lander will descend through Titan’s atmosphere and land on the liquid surface of Kraken Mare (~75° north latitude). As for any planetary space science mission, and based on the Cassini–Huygens experience, Earth-based observations will be synergistic and enable scientific optimization of the return of such a mission. Some specific examples of how this can be achieved (through VLBI and Doppler tracking, continuous monitoring of atmospheric and surface features, and Direct-to-Earth transmission) are described in this paper.  相似文献   
136.
The Cassini–Huygens mission, comprising the NASA Saturn Orbiter and the ESA Huygens Probe, arrived at Saturn in late June 2004. The Huygens probe descended under parachute in Titan’s atmosphere on 14 January 2005, 3 weeks after separation from the Orbiter. We discuss here the breakthroughs that the Huygens probe, in conjunction with the Cassini spacecraft, brought to Titan science. We review the achievements ESA’s Huygens probe put forward and the context in which it operated. The findings include new localized information on several aspects of Titan science: the atmospheric structure and chemical composition; the aerosols distribution and content; the surface morphology and composition at the probe’s landing site; the winds, the electrical properties, and the implications on the origin and evolution of the satellite.  相似文献   
137.
This contribution is not about the quality of the agreement between stellar models computed by CESAM and CLÉS codes, but more interesting, on what ESTA-Task 1 run has taught us about these codes and about the input physics they use. We also quantify the effects of different implementations of the same physics on the seismic properties of the stellar models, that in fact is the main aim of ESTA experiments.  相似文献   
138.
139.
We compute the Milky Way potential in different cold dark matter (CDM) based models, and compare these with the MOdified Newtonian Dynamics (MOND) framework. We calculate the axial ratio of the potential in various models, and find that isopotentials are less spherical in MOND than in CDM potentials. As an application of these models, we predict the escape velocity as a function of the position in the Galaxy. This could be useful in comparing with future data from planned or already-underway kinematic surveys (RAVE, SDSS, SEGUE, SIM , Gaia or the hypervelocity stars survey). In addition, the predicted escape velocity is compared with the recently measured high proper motion velocity of the Large Magellanic Cloud (LMC). To bind the LMC to the Galaxy in a MOND model, while still being compatible with the RAVE-measured local escape speed at the Sun's position, we show that an external field modulus of less than  0.03 a 0  is needed.  相似文献   
140.
Strong gravitational lensing by galaxies in MOdified Newtonian Dynamics (MOND) has until now been restricted to spherically symmetric models. These models were able to account for the size of the Einstein ring of observed lenses, but were unable to account for double-imaged systems with collinear images, as well as four-image lenses. Non-spherical models are generally cumbersome to compute numerically in MOND, but we present here a class of analytic non-spherical models that can be applied to fit double-imaged and quadruple-imaged systems. We use them to obtain a reasonable MOND fit to 10 double-imaged systems, as well as to the quadruple-imaged system Q2237+030 which is an isolated bulge-disc lens producing an Einstein cross. However, we also find five double-imaged systems and three quadruple-imaged systems for which no reasonable MOND fit can be obtained with our models. We argue that this is mostly due to the intrinsic limitation of the analytic models, even though the presence of small amounts of additional dark mass on galaxy scales in MOND is also plausible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号